Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As High Performance Computing (HPC) applications with data security requirements are increasingly moving to execute in the public cloud, there is a demand that the cloud infrastructure for HPC should support privacy and integrity. Incorporating privacy and integrity mechanisms in the communication infrastructure of today's public cloud is challenging because recent advances in the networking infrastructure in data centers have shifted the communication bottleneck from the network links to the network end points and because encryption is computationally intensive. In this work, we consider incorporating encryption to support privacy and integrity in the Message Passing Interface (MPI) library, which is widely used in HPC applications. We empirically study four contemporary cryptographic libraries, OpenSSL, BoringSSL, Libsodium, and CryptoPP using micro-benchmarks and NAS parallel benchmarks to evaluate their overheads for encrypting MPI messages on two different networking technologies, 10Gbps Ethernet and 40Gbps InfiniBand. The results indicate that (1) the performance differs drastically across cryptographic libraries, and (2) effectively supporting privacy and integrity in MPI communications on high speed data center networks is challenging-even with the most efficient cryptographic library, encryption can still introduce very significant overheads in some scenarios such as a single MPI communication operation on InfiniBand, but (3) the overall overhead may not be prohibitive for practical uses since there can be multiple concurrent communications.more » « less
-
Arbitrary patterning of micro-objects in liquid is crucial to many biomedical applications. Among conventional methodologies, acoustic approaches provide superior biocompatibility but are intrinsically limited to producing periodic patterns at low resolution due to the nature of standing waves and the coupling between fluid and structure vibrations. This work demonstrates a near-field acoustic platform capable of synthesizing high resolution, complex and non-periodic energy potential wells. A thin and viscoelastic membrane is utilized to modulate the acoustic wavefront on a deep, sub-wavelength scale by suppressing the structural vibration selectively on the platform. Using 3 MHz excitation ( λ ∼ 500 μm in water), we have experimentally validated such a concept by realizing patterning of microparticles and cells with a line resolution of 50 μm (one tenth of the wavelength). Furthermore, massively parallel patterning across a 3 × 3 mm 2 area has been achieved. This new acoustic wavefront modulation mechanism is powerful for manufacturing complex biologic products.more » « less
-
We developed a highly efficient method for patterning cells by a novel and simple technique called lift-off cell lithography (LCL). Our approach borrows the key concept of lift-off lithography from microfabrication and utilizes a fully biocompatible process to achieve high-throughput, high-efficiency cell patterning with nearly zero background defects across a large surface area. Using LCL, we reproducibly achieved >70% patterning efficiency for both adherent and non-adherent cells with <1% defects in undesired areas.more » « less
An official website of the United States government

Full Text Available